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INTRODUCTION

Oil is the world most important source of en-
ergy. Extraction of oil and gas is accompanied by 
the release of vast amounts of water, known as 
produced water, as a by-product. The proportion 
of water created in oil varies based on a variety of 
conditions, but in mature or ancient fields, it can 
exceed 98 percent of the material taken from oil 
wells. Due to the volume of oily water and waste 
products increasing, treating problems of this oily 
water production is quite difficult. It is regarded 
as the primary cause of environmental pollution 
caused by oil extraction operations. Geological 
formation, extraction methods, natures created, 
hydrocarbon reservoir lifespan drawn up from it, 
and field location all have an impact on the na-
ture of this water. Because it was brought to the 
surface through the extraction of oil or gas from 
a hydrocarbon reservoir, this water contains a 

variety of complex organic and inorganic chemi-
cals (Galvão 2017).

Many traditional techniques available to 
treat the produced water, like flotation (da Silva 
et al. 2015), air flotation (Panneer Selvam 2018; 
Al-Shamrani, James, and Xiao 2002), skimming 
(Hobson 1996), gravity separation (Pintor et al. 
2016), neutralization (Elmi et al. 2021), biologi-
cal microfiltration processes (Ghimire and Wang 
2018), membrane bioreactor (Capodici et al. 
2017), membrane process (ultrafiltration and 
nanofiltration membranes)(Elhady et al. 2020), ex-
traction (Vegas Mendoza et al. 2019), coagulation 
(Zhao et al. 2021; Jabbar and M.J. Alatabe 2021), 
flocculation (Jabbar and M.J. Alatabe 2021; Jab-
bar and M.J.A. Alatabe 2021), electrocoagulation 
(Hassan, AlJaberi, and AL-Khateeb 2022), ion 
exchange (Charles et al. 2016), emulsion break-
ing (You et al. 2018), activated sludge (Alexan-
dre et al. 2016), chemical precipitation (Altaş and 
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Büyükgüngör 2008), electrochemical (Druskovic 
et al. 2021), biochemical and biological treatment 
(Acharya et al. 2020), and adsorption (Hamid et 
al. 2016). These approaches have various draw-
backs, including low flow rates, delayed kinetics, 
high power requirements, ineffective removal of 
organic pollutants, increased upfront capital and 
maintenance expenses, and inefficient removal of 
organic pollutants at lower concentrations (Jaafar 
and Alatabe, 2019). 

Adsorption is the greatest way to make bio-
sorption a practical technology that is more cost-
effective than conventional methods by employ-
ing waste from sustainable agricultural sources of 
raw materials (Rajakovic et al. 2007). Numerous 
adsorbent substances, including hydrated cellu-
lose, were utilized to extract and reduce the oil in 
the resulting oily water (El Achaby et al. 2018), 
peat-moss (Pandey and Alam 2019), hemp (Devi 
and Khanam 2019), polyurethane foam (Nik-
khah et al. 2015), straw (Ibrahim, Wang, and Ang 
2010), sawdust (Fugaeva, Malyshkina, and Glush-
chenko 2021), cotton (Ge et al. 2014), turf (Pasila 
2004), wood flour (Aranguren, González, and 
Mosiewicki 2012). Other researchers used Au-
ricularia polytricha to adsorbents to extract the oil 
from polluted water (Yang et al. 2014; Pintor et al. 
2016), eggshell (Muhammad et al. 2012), kapok 
fiber (Rengasamy et al. 2011; Wang et al. 2012; 
Wang et al. 2013), walnut shell media (Sriniva-
san and Viraraghavan 2008), modified sugarcane 
bagasse (Behnood et al. 2016) the results shown 
a strong ability to extract the oil from oily water. 
as adsorbents media. Sedge cane is a low-cost, 
exotic, natural, and eco-friendly plant that can be 
used to absorb oil from oily water. It is cultivated 
all over the world. Due to availability, sustainabil-
ity, renewable resources, and low cost, sedge cane 
(a biological absorbent) is a viable technology. 
Sedge cane grows naturally at high density and is 
used for various tasks there.

By employing natural plants (Sedge cane) as 
adsorbent under a variety of conditions, includ-
ing temperature, adsorbent dose, and contact time. 
Manuscript intends to recovery the oil and treated 
generated water while also examining the isotherm, 
kinetics, and thermodynamics of adsorption.

MATERIALS AND METHODS

Collection process of the sedge cane, when 
the sedge cane’s leaves had already sprouted and 

appeared to be in excellent condition. The leaves 
were carefully separated from the plant stems, 
properly washed with tap water to remove dirt, 
soil, and debris, and then allowed to dry in the 
sun for at least a week. The desiccated biomass 
was powdered into a fine mist using (100–200) 
µm mesh size to use in experiments, by a ham-
mer mill (Fitzmill Mill Hammer, L1A, R24330, 
China), and then weighed with a sensitive bal-
ance of 0.00001 accuracies. Following grinding, 
the materials were dried for 24 hours at 105 °C 
in an oven. The dried samples were then kept 
in desiccators to stop them from absorbing any 
more moisture. The adsorbent had a microstruc-
ture that was fluffy, extremely porous, rough, and 
contained some gaps and cracks that were ideal 
for adsorbing oil. SEM tests (X-ray diffraction 
device (XRD-6000, Shimadzu, equipment for 
qualitative analysis) and FTIR (UV-visible spec-
trophotometer, model Genesys TM 10, Thermo 
firm) demonstrate the sedge cane’s qualities. 

Procedure

First, treated produced water was flocculated 
using 30 ppm of ferric sulfate as the coagulant and 
2.5 mg/L of polyacrylamide as the flocculant dos-
age. In earlier studies, the oil content decreased to 
53.56 mg/L.(Alkhazraji and Alatabe 2021; Jabbar 
and M.J.A. Alatabe 2021). The capacity of Sedge 
cane to absorb oil from produced water was then 
investigated using 100 mL of produced water. Ad-
sorbent dose 0.5, 1, 2, 3, 4 and 5 g, temperature 30, 
40, 50 and 60 °C, used Water bath, model WNB, 
Memmert Company. The variables under investi-
gation were contact duration (15, 30, 60, 90, and 
120 min) and rotational speed of the mixer (250 
rpm) with a hot plate with a magnetic stirrer. The 
TD-500 examined the materials’ oil concentra-
tion. The development of the adsorption method 
must consider the best design for the adsorption 
of oil. Additionally, beakers, cylinders, measur-
ing pipettes, conical flasks, volumetric flasks, and 
acid-washed containers were employed.

Adsorption capacity

The percentage removal of Oil from water 
was estimated by using Equation (l):

(%) Oil removal =
𝐶𝐶𝐶𝐶0 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
𝐶𝐶𝐶𝐶0

× 100 

𝑞𝑞𝑞𝑞 =
𝑉𝑉𝑉𝑉(𝐶𝐶𝐶𝐶0 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒)

𝑀𝑀𝑀𝑀
 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝐾𝐾𝐾𝐾𝑙𝑙𝑙𝑙 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

1 + 𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 = 𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
1
𝑛𝑛𝑛𝑛 

log𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =  log𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓 +
1
𝑛𝑛𝑛𝑛

log𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧)
1
𝑧𝑧𝑧𝑧

 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚

1 + 𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚
 

𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

= 𝑘𝑘𝑘𝑘1(𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 − 𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡) 

𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

= 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 − 𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡)2 

𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡 =
1
 𝛽𝛽𝛽𝛽

ln(𝛼𝛼𝛼𝛼 𝛽𝛽𝛽𝛽) +
1
𝛽𝛽𝛽𝛽

ln 𝑎𝑎𝑎𝑎 

∆𝐺𝐺𝐺𝐺° = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅 

∆𝐺𝐺𝐺𝐺° = ∆𝐻𝐻𝐻𝐻° − 𝑅𝑅𝑅𝑅∆𝑆𝑆𝑆𝑆° 

𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅 =  
∆𝑆𝑆𝑆𝑆°
𝑅𝑅𝑅𝑅

−  
∆𝐻𝐻𝐻𝐻°
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

(1)
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To calculate the adsorption capacity (q) uti-
lized Equation (2):

(%) Oil removal =
𝐶𝐶𝐶𝐶0 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
𝐶𝐶𝐶𝐶0

× 100 

𝑞𝑞𝑞𝑞 =
𝑉𝑉𝑉𝑉(𝐶𝐶𝐶𝐶0 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒)

𝑀𝑀𝑀𝑀
 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝐾𝐾𝐾𝐾𝑙𝑙𝑙𝑙 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

1 + 𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 = 𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
1
𝑛𝑛𝑛𝑛 

log𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =  log𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓 +
1
𝑛𝑛𝑛𝑛

log𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧)
1
𝑧𝑧𝑧𝑧

 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚

1 + 𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚
 

𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

= 𝑘𝑘𝑘𝑘1(𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 − 𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡) 

𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

= 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 − 𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡)2 

𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡 =
1
 𝛽𝛽𝛽𝛽

ln(𝛼𝛼𝛼𝛼 𝛽𝛽𝛽𝛽) +
1
𝛽𝛽𝛽𝛽

ln 𝑎𝑎𝑎𝑎 

∆𝐺𝐺𝐺𝐺° = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅 

∆𝐺𝐺𝐺𝐺° = ∆𝐻𝐻𝐻𝐻° − 𝑅𝑅𝑅𝑅∆𝑆𝑆𝑆𝑆° 

𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅 =  
∆𝑆𝑆𝑆𝑆°
𝑅𝑅𝑅𝑅

−  
∆𝐻𝐻𝐻𝐻°
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

(2)

where: q is expressed as mg/g,  
C0 is the initial concentration,   
Ce is the equilibrium concentration,   
M is the adsorbent dosage,   
V is the solution volume (L), 
(Hadi, Al-Zobai, and Alatabe 2020). 

RESULTS AND DISCUSSION

Investigation for Fourier transform 
infrared spectroscopy

Figure 1 shows the Fourier transform infrared 
(FTIR) spectrum of sedge cane. In this spectra, 
an absorption line at 3400 cm-1 corresponds to the 
axial vibration of the hydroxyl groups (O-H) in 
cellulose. The oscillation of CH2 and CH3 mol-
ecules in organic structures is shown by the band 

at 2850 cm-1. Due to its limited amplitude, this 
band in the sedge cane may not make significant 
contact with the polymer matrix during the pro-
duction of a composite. The link between organic 
molecules is represented by the band at 2360 cm-1. 
The C=O aromatic groups are represented by the 
band at 1650 cm-1, while the C-O and C-C bonds 
are represented by the band at 1250 cm-1. Defor-
mation of the corresponding covalent bonds C-O 
and C-C are responsible for the bands at 1020 and 
460 cm-1, respectively.

Scanning electron microscopic investigation

Scanning electron microscopic (SEM) ob-
servations of the sedge cane’s surface properties 
are shown in Figure 2. A relatively rough sedge 
cane surface, like that in Figure 2c, is usually re-
garded as a benefit for composite materials be-
cause it might encourage mechanical interlocking 
at the sedge cane-matrix interface, which might 
help the canes and matrix stick together. Higher 
magnification images, on the other hand, showed 

Figure 1. Fourier transforms infrared spectroscopy and EDX spectra of the sedge cane

Figure 2. Scanning electron microscopic of the sedge cane
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inhomogeneity, as shown by the difference be-
tween the rougher and smoother areas of Figure 
2B. Inset of Figure 2B may show micro-cracks 
(arrows), which could be caused by SEM electron 
beam strength degradation.

The primary goal of the research is to identify 
the ideal operational parameters that will enhance 
oil adsorption.

Effects of contact time

In order to attain equilibrium throughout the 
batch process, the contacts’ time connection and 
oil removal between them were regulated, as 
shown in Figure 3. Oil removal increased with 
longer contact times. Due to a rise in adsorbent 
surface area voids, adsorption occurred very 
quickly on the surface between the first (15–45) 
and last (60–90) minutes of the experiment. Fol-
lowing that, the adsorption reaction maintains a 
steady rate and then starts to slow down as the 
majority of the adsorbent surface area gaps are 
filled.

Effects of adsorbent dose

Figure 4 illustrates how oil removal changes 
as adsorbent dose varies under particular circum-
stances. It also demonstrates how oil removal 
increases as adsorbent dosage rises, reaching its 
maximum level at 5 g/L. (95%). Due to the Sedge 
cane reaching its optimal dosage, the adsorption 
process maintains a steady rate as the sorbent dos-
age increases.

Effects of temperature

Figure 5 shows how temperature affects oil 
removal; as is well knowledge, oil is hydrophobic 
and sticky. The temperature affects how soluble a 

liquid is. The solubility will rise from 25 °C to 40 
°C as the temperature rises, and since the reaction 
will remain constant with higher temperatures, 
the solution will have a high solubility. 

Adsorption isotherms models

The adsorption isotherm is required due to 
the dispersion of pollutants between the liquid 
and solid phases [44]. In this study, four isotherm 
models were examined in an effort to find the best 
one that would work with sedge cane oil removal: 

The Langmuir model

Assuming monolayer adsorption, the Lang-
muir isotherm. This kind of isotherm was de-
scribed by Equation 1. (Langmuir 1918; Lang-
muir 1917).

(%) Oil removal =
𝐶𝐶𝐶𝐶0 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
𝐶𝐶𝐶𝐶0

× 100 

𝑞𝑞𝑞𝑞 =
𝑉𝑉𝑉𝑉(𝐶𝐶𝐶𝐶0 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒)

𝑀𝑀𝑀𝑀
 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝐾𝐾𝐾𝐾𝑙𝑙𝑙𝑙 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

1 + 𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 = 𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
1
𝑛𝑛𝑛𝑛 

log𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =  log𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓 +
1
𝑛𝑛𝑛𝑛

log𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
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(3)

where: Kl  in (mL/ g) & al in (mL/mg) are Lang-
muir constants. 

Figure 3. Contact time effect to oil removal% onto 
the sedge cane at T = 40 °C, adsorbent dose = 5 g/L

Figure 4. Adsorbent dose-effect to oil 
removal% at T = 40 °C and t = 60 min

Figure 5. Temperature influence on oil removal 
percentage at 60 minutes and 5 g/L of adsorbent
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The Freundlich model

The nonlinear adsorption process is mod-
eled using the Freundlich equation [47]. One of 
the most popular isotherms for absorption is this 
one. The following equations yield the Freundlich 
model’s linear and nonlinear forms:
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where: qe adsorbed metal ions in (mg/g);   
Kf (L1/n·mg1-1/n·g-1 ) and n are constants, 
the Freundlich model will reduce to the 
linear model when n = 1.

Toth isotherm model 

This model was created to expand the Lang-
muir model’s applications in diverse systems (Eq. 
(6) [48]). It is presumptive that the majority of 
adsorption locations have lower adsorption ener-
gies than the mean energy (Ho 2002).
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where: Kt (mg/g) stands for the constant, at (mgz/
Lz) for the Toth constant, and z is a term 
that denotes how heterogeneous the ad-
sorption systems are. z is not affected by 
temperature, whereas the number of at 
rises as the temperature rises (Barst et al. 
2012). Toth model changes to Langmuir 
isotherm at z = 1. More heterogeneity in 
the adsorption system is indicated by a 
larger departure of z from 1.

Sips isotherm model

Another composite model that combines 
the Langmuir and Freundlich models is the Sips 
model [49]. The 3-parameter isotherm model for 
monolayer adsorption with the greatest applica-
bility is the Sips model. Both uniform and het-
erogeneous systems can be described by the Sips 
model [50]. Equation presents the non-linear Sips 
isotherm model.
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1 + 𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 = 𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
1
𝑛𝑛𝑛𝑛 

log𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =  log𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓 +
1
𝑛𝑛𝑛𝑛

log𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧)
1
𝑧𝑧𝑧𝑧

 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚

1 + 𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚
 

𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

= 𝑘𝑘𝑘𝑘1(𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 − 𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡) 

𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

= 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 − 𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡)2 

𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡 =
1
 𝛽𝛽𝛽𝛽

ln(𝛼𝛼𝛼𝛼 𝛽𝛽𝛽𝛽) +
1
𝛽𝛽𝛽𝛽

ln 𝑎𝑎𝑎𝑎 

∆𝐺𝐺𝐺𝐺° = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅 

∆𝐺𝐺𝐺𝐺° = ∆𝐻𝐻𝐻𝐻° − 𝑅𝑅𝑅𝑅∆𝑆𝑆𝑆𝑆° 

𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅 =  
∆𝑆𝑆𝑆𝑆°
𝑅𝑅𝑅𝑅

−  
∆𝐻𝐻𝐻𝐻°
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

(7)

where: Ks (Lns mg-ns) and ns are the Sips constants 
and qms (mgg-1) is the maximum quantity 
that can be adsorbed. 

When ns = 1, the Sips model transforms into 
the Langmuir model, and at low C0, it transforms 
into the Freundlich model. At low C0, the Sips 
model does not, however, satisfy the Henry’s rule.

Table 1. Constants created for oily water are modeled 
by the isotherm

Isotherms models Parameters Values

Langmuir
aL
KL
R2

0.0952
1.4290
0.9967

Freundlich
n
Kf
R2

0.0771
2.5714
0.4166

Toth
at
Kt
R2

0.4524
0.0766
0.9560

Sips
ns
Ks
R2

0.4190
0.0466
0.9062

Figure 6. Oil adsorption onto sedge cane use isotherme model adsorption
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To get the isotherm constants, the linearized 
forms of the Langmuir, Freundlich, Toth, and 
Sips isotherm models were analyzed using Equa-
tions (3), (5), (6), and (7), respectively. With the 
help of the constants in Table 1, it is clear that the 
equation for the Langmuir model (R2 = 0.9967) 
has greater linearity than the equations for other 
models. The results for the adsorption isotherm 
were also perfectly proportional to the Langmuir 
isotherm. Figure 6 displays experimental data and 
isotherm model curves.

The experimental results, which closely 
matched the Langmuir isotherm, pointed to a 
single-layer process with maximum oil molecule 
adsorption onto the surface of Sedge cane. The 
Langmuir isotherm assumes that the adsorbent 
surface has a limited number of active sites and 
that the molecules being adsorbed are not in con-
tact with one another.

Adsorption Kinetic Models Studies 

Adsorption kinetics research reveals the rate 
at which substances are adsorbed and adsorbate 
onto an adsorbent, hence it is necessary for deter-
mining the optimal operating conditions. The data 
on adsorption kinetics are examined by many ki-
netic models.

Pseudo-First-Order (PFO) model

The PFO model was firstly proposed by La-
gergren (1898). The differential form of the PFO 
model is described by Eq. (8)(Lagergren 1898): 

(%) Oil removal =
𝐶𝐶𝐶𝐶0 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
𝐶𝐶𝐶𝐶0

× 100 

𝑞𝑞𝑞𝑞 =
𝑉𝑉𝑉𝑉(𝐶𝐶𝐶𝐶0 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒)

𝑀𝑀𝑀𝑀
 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝐾𝐾𝐾𝐾𝑙𝑙𝑙𝑙 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

1 + 𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 = 𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
1
𝑛𝑛𝑛𝑛 

log𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =  log𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓 +
1
𝑛𝑛𝑛𝑛

log𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧)
1
𝑧𝑧𝑧𝑧

 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚

1 + 𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚
 

𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

= 𝑘𝑘𝑘𝑘1(𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 − 𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡) 

𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

= 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 − 𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡)2 

𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡 =
1
 𝛽𝛽𝛽𝛽

ln(𝛼𝛼𝛼𝛼 𝛽𝛽𝛽𝛽) +
1
𝛽𝛽𝛽𝛽

ln 𝑎𝑎𝑎𝑎 

∆𝐺𝐺𝐺𝐺° = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅 

∆𝐺𝐺𝐺𝐺° = ∆𝐻𝐻𝐻𝐻° − 𝑅𝑅𝑅𝑅∆𝑆𝑆𝑆𝑆° 

𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅 =  
∆𝑆𝑆𝑆𝑆°
𝑅𝑅𝑅𝑅

−  
∆𝐻𝐻𝐻𝐻°
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

(8)

where: qe & qt are adsorption capacity at equilib-
rium and at time t respectively in (mg/g);  
k1 rate constant of PFO model in (min-1) 
(Jaafar and Alatabe 2019). 

Pseudo-Second-Order (PSO) model 

The adsorption of lead onto grass was the first 
application of the PSO model (Eq. (9)). The PSO 
model was subsequently extensively used to ex-
plain the adsorption processes. In the majority of 
published articles, the adsorption experimental 
data and adsorption rate constants were predicted 
using the PSO model (Ho and McKay 1999):

(%) Oil removal =
𝐶𝐶𝐶𝐶0 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
𝐶𝐶𝐶𝐶0

× 100 

𝑞𝑞𝑞𝑞 =
𝑉𝑉𝑉𝑉(𝐶𝐶𝐶𝐶0 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒)

𝑀𝑀𝑀𝑀
 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝐾𝐾𝐾𝐾𝑙𝑙𝑙𝑙 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

1 + 𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 = 𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
1
𝑛𝑛𝑛𝑛 

log𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =  log𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓 +
1
𝑛𝑛𝑛𝑛

log𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧)
1
𝑧𝑧𝑧𝑧

 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚

1 + 𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚
 

𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

= 𝑘𝑘𝑘𝑘1(𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 − 𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡) 

𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

= 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 − 𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡)2 

𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡 =
1
 𝛽𝛽𝛽𝛽

ln(𝛼𝛼𝛼𝛼 𝛽𝛽𝛽𝛽) +
1
𝛽𝛽𝛽𝛽

ln 𝑎𝑎𝑎𝑎 

∆𝐺𝐺𝐺𝐺° = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅 

∆𝐺𝐺𝐺𝐺° = ∆𝐻𝐻𝐻𝐻° − 𝑅𝑅𝑅𝑅∆𝑆𝑆𝑆𝑆° 

𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾𝑅𝑅𝑅𝑅 =  
∆𝑆𝑆𝑆𝑆°
𝑅𝑅𝑅𝑅

−  
∆𝐻𝐻𝐻𝐻°
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

(9)

where: ks PSO model rate constant in g/(mg.min).

Elovich model

The Elovich model’s fundamental presump-
tions were that:
1) the activation energy increased with adsorption 

duration and, 
2) the adsorbent surface was heterogeneous.

An observational model without clear physi-
cal implications, the Elovich model. Although it 
is extensively used in liquid-solid adsorption, it is 
frequently used to model the chemisorption of gas 
onto solids. Eq. has provided a description of the 
Elovich model (10) (Elovich and Larinov 1962):

(%) Oil removal =
𝐶𝐶𝐶𝐶0 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
𝐶𝐶𝐶𝐶0

× 100 

𝑞𝑞𝑞𝑞 =
𝑉𝑉𝑉𝑉(𝐶𝐶𝐶𝐶0 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒)

𝑀𝑀𝑀𝑀
 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝐾𝐾𝐾𝐾𝑙𝑙𝑙𝑙 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

1 + 𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 = 𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
1
𝑛𝑛𝑛𝑛 

log𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =  log𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓 +
1
𝑛𝑛𝑛𝑛

log𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒

 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑧𝑧𝑧𝑧)
1
𝑧𝑧𝑧𝑧

 

𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 =
𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚

1 + 𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚
 

𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

= 𝑘𝑘𝑘𝑘1(𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 − 𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡) 

𝑑𝑑𝑑𝑑𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

= 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑞𝑞𝑞𝑞𝑒𝑒𝑒𝑒 − 𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡)2 

𝑞𝑞𝑞𝑞𝑡𝑡𝑡𝑡 =
1
 𝛽𝛽𝛽𝛽
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(10)

where: the initial bio-sorption rate in (mg/g.min) 
is α and the surface coverage β are linked 
to the extent and the activation energy of 
chemisorption in (g/mg).

Using four distinct models, the batch process 
instantaneous adsorption was studied. The "PFO", 
"PSO", and "Elovich" models were among these 
kinetic models. The models were developed uti-
lizing the experimental results to generate the ki-
netic parameters.

Table 2. Kinetic constants models for adsorption oily 
water onto Sedge cane

Kinetics models Parameters Values

PFO  Equ. (7)
qe
K1
R2

137.40
0.0270
0.9382

PSO  Equ. (8)
qe
Ks
R2

0.4380
1.3640
0.8147

Elovich  Equ. (10)
α
β
R2

2.4220
0.4370
0.7880

Figure 7. PFO kinetic model for adsorption 
oily water adsorption by Sedge cane
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Excel software was used to gather the contacts 
for these models. The analysis’ findings are shown 
in Table 2, and the fitted model’s adsorption capa-
city is shown in Figures 7 to 9. Figures 7 through 
9 show the relationship between log (qe-qt) and 
time for the PFO model, (time/qt) and time for 
the PSO model, and the "Elovich" model’s link 
between qt and ln (time).

It appears that the kinetics of the oil content 
adsorption onto sedge cane was found to be better 
fitted by a PFO model than other models, demon-
strating the applicability of the Lagergren kinetic 
model to define the oily water adsorption process 
by the sedge cane, based on a comparison of the 
correlation coefficient (R2) values of each curve 
for each of the three models listed in Table 2.

Adsorption thermodynamic results

At temperatures between 20 and 60 °C, oily wa-
ter deliberately had an adsorption effect on the tem-
perature. Adsorption process spontaneity is speci-
fied by “The Gibbs energy change” (G°), and ad-
vanced unfavorable value reproduces more dynami-
cally promising adsorption [54] (Alatabe 2018). The 
standard free energy change (G°), standard enthalpy 

change (H°), and standard entropy change (S°) are 
among the thermodynamic parameters that can be 
calculated using these equations (Alatabe 2018):

(%) Oil removal =
𝐶𝐶𝐶𝐶0 − 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒
𝐶𝐶𝐶𝐶0

× 100 
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When the universal gas constant (“R”) equals 
(8.314 J/mol. K, T is the temperature in K, and Kc 
is the thermodynamic equilibrium constant (with-
out units). The following relation can be used to 
calculate the adsorption enthalpy change (H°) and 
entropy change (S°):
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𝐶𝐶𝐶𝐶0
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 (13)

Limits of (H°) and (S°) are intended from 
Equation (13), respectively, based on the slope 
and intercept of a plot of lnKc vs 1/T (Figure 10).

Thermodynamic proposed parameters and a 
mechanism for the adsorption process. Free energy 
change values were negative to see if oil adsorp-
tion was impulsive and thermodynamically vi-
able; however, when the temperature increased to 
(-0.217, -0.335, -0.489, and -0.599) KJ/mol, the G° 
readings dropped even further. At higher tempera-
tures, specifically (30, 40, 50, and 60 °C), there is 
a strong driving force and correspondingly great-
er adsorption capacity. The positive value of H° 
(0.694 KJ/mol) served as evidence for the endo-
thermic adsorption process. Because some water 
molecules were removed by oil adsorption in the 
temperature range of 20 to 60 °C, a tiny but posi-
tive value of S° (0.0208 KJ/mol. K) showed in-
creased randomness at the solid-solution interface. 

CONCLUSIONS 

According to the study, sedge cane was suc-
cessful at adsorbing oil from generated water 

Figure 8. PSO kinetic model for adsorption 
oily water adsorption by Sedge cane

Figure 9. Elovich kinetic model for adsorption 
oily water adsorption by Sedge cane

Figure 10. Oil adsorption onto Sedge 
cane thermodynamic parameters
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because it was available functional groups, which 
were shown by FTIR to be effective. The equilib-
rium isotherm of oil removal is best described by 
the Langmuir equation (95 percent oil removal at 
temperature 40 °C, adsorbent dosage 5 gm/L, and 
60 min contact time) than other equations. For 
kinetics and thermodynamics research, the PFO 
model adsorption predominates. Finally, we ad-
vised employing sedge cane to recover oil from 
produced water in the oil drilling and production 
company since it absorbed the oil from the water 
with great efficiency.
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